Tank Mix and Adjuvants Summary

- The entire tank mix determines droplet size
- Adjuvants added to improve spray performance
- Droplet size spectra
- Drift potential
- Surfactants
- Drift control adjuvants
- Fertilizers

SDTF Generic Approach

- The entire tank mix, not the a.i. Determines droplet size and drift potential
- Droplet size spectra can be classified using generic categories (ASAE S-572 droplet size categories)

Adjuvants as part of the tank mix

- Adjuvants are used with real tank mixes (not water), so tests should not only be based on mixing with water
- Some effects vary with different application conditions (especially nozzle type)

How Important is the Tank Mix in Atomization?

- Application parameters (nozzle type, use, pressure, air speed, etc) have major effect on atomization
- Tank mix is generally less important than application parameters, but still significant for many applications

Previous Studies

- SDTF found differences in spray quality from >200 different tank mixes with different formulation, a.i. and pesticide types
- SDTF also looked at some tank mix adjuvants, but only from perspective of surface tension and viscosity effects on atomization and drift
- Subsequent researchers have looked at other effects on spray formation and distribution patterns

Surfactants and Emulsions

- Typically added to increase retention/ rainfastness, spreading, sticking, mixing
- Many different products but several major chemistry groups
- Main effect is on surface tension, which can be measured using standard techniques

Polymers

- Used as drift control adjuvants/ deposition aids
- Hundreds of products but only a few chemistries
- Need to be sure of compatibility with nozzle type being used and tank mix partners - tests with water may not be representative
- Some polymers break down when pumped giving change in performance over time

Effects of Polymers on Droplet Size Spectrum

- Typically increase D_{v0.5}
- Generally increase relative span
- Correlation between droplet size and extensional viscosity (elongational viscosity)

Through an 8002 Nozzle			
Material	Spray Fluid Type Volu	me Median Diameter (Microns)	Relative Span
Water	Standard	198	1.4-1.5
Bentonite	Dispersion	194	1.55
Kaolin	Dispersion	201	1.50
Calcium carbonate	Dispersion	202	1.48
Hydrated silica	Dispersion	197	1.48
EC blank formulation	Emulsion aromatic solven	238	1.15
Sun-It 11	Emulsion oil blend	232	1.12
Methyl canolate	Emulsion seed oil	235	1.16
Silwet L-77	Emulsion silicone surfacta	nt 224	1.20
C13 EO3	Emulsion insoluble surfact	ant 238	1.12
C13 EO6	Emulsion insoluble surfact	ant 212	1.17
C13 EO9	Soluble surfactant	132	1.86
C13 EO12	Soluble surfactant	137	1.79
C10 EO6	Soluble surfactant	140	1.84

Spray Drift

- Any adjuvant that causes an increase in "fines" (~<150 µm) may increase drift potential in aerial and many ground rig applications
- Although droplet size is main influence on drift, other factors are also important (e.g. droplet velocities, trajectories, evaporation rates, encapsulation, etc)

Fertilizer Effects

- Some suggestions that fertilizers increase drift potential
- Probably actually increase drift damage rather than drift exposure risk
- Literature reports on increased activity of glyphosate with ammonium sulfate
- SDTF conducted atomization tests showing no effect on droplet size spectra

New SDTF Fact Sheet

- New fact sheet on tank mixes and nozzles
- Explains droplet size classification and SDTF atomization and physical property studies
- Available in hard copy and on www.agdrift.com

Conclusions

- Formulation effects on nozzle performance are important, influencing atomization, retention, efficacy and spray transport/ drift
- Entire tank mix, not a.i. or formulation type, affects drift potential
- Entire droplet size spectrum (especially "fine" end) important, not only VMD
- Surfactants and crop oils have varying effects
- Emulsions may increase droplet size and narrow the spectrum width

Conclusions

- Some polymers broken down by pumping
- Some new nozzle designs may be more sensitive to formulation effects
- Other effects: encapsulation, evaporation retardants, etc
- Ongoing and future work looking at total spray process